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ABSTRACT 

In this paper we explore Hilbert geometry in a triangle, using Maple to illustrate some concepts 

such as Hilbert distance, projective and affine coordinates, unitary circle, etc. and to introduce 

new “trigonometric functions” for this geometry.  

 

1. Introduction. 

 

1.1 Some historical facts and context. 

 

Euclid wrote his famous Elements around 300 B. C. In this thirteen - volume work, he 

brilliantly organized and presented the fundamental propositions of Greek geometry and 

number theory. In the first book of the Elements, Euclid develops plane geometry 

starting with five postulates, the first four of which never aroused controversy. 

However, the status of the fifth axiom (the so- called parallel axiom) was less clear, and 

became the subject of investigations. For many years mathematicians tried to prove the 

fifth postulate, in particular Gauss in 1792 discovered that the denial of the fifth 

postulate leads to a new strange geometry which he called non- Euclidean geometry. 

Only a few years passed before non- Euclidean geometry was rediscovered 

independently by Nikolai Lobachevsky and János Bolyai. Today, the non-Euclidean 

geometry of Gauss, Lobachevsky and Bolyai is called hyperbolic geometry, and the 

term non- Euclidean refers to any geometry that is not Euclidean.   

Although Euclidean geometry is a fantastic accurate theory of space it is not, however, a 

perfect theory: modern experiments have reveled extremely small discrepancies 

between predictions of Euclidean geometry and the measured geometric properties of 

figures constructed in physical space. These departures from Euclidean geometry are 

now known to be governed in precise mathematical way, by the distributions of matter 

and energy in space. This is the essence of revolutionary theory of gravity discovered by 

Einstein in 1915.  

Riemann highlighted the existence of three types of geometry: Euclidean, Hyperbolic 

and Elliptic. In his Habilitationsvortrag of 1854, Riemann introduced a metric structure 

in a general space based on the element of arc: ( )1 1 2, ;nds F x x dx dx= . Here, 

( );F x y  is a positive (when 0y  ) function on the tangent bundle TM  and is 

homogeneous of degree one in y . An important special case is when ( )2 i j

ijF g x dx dx=  
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 Historical developments have conferred the name Riemannian geometry to this case 

while the general case, Riemannian geometry without the quadratic restriction, has been 

known as Finsler geometry [24]. The name “Finsler geometry” came from Finsler’s 

thesis of 1918. It is actually the geometry of a simple integral and is as old as the 

calculus of variations. Hilbert attached great importance to the field, and in his famous 

Paris address of 1900 devoted Problem 23 to the variational calculus of ds and its 

geometrical overtones.  

On the other hand in 1870 Felix Klein produced an account that unified a large class of 

different geometries. According to Klein – Cayley there are at least nine different 

geometries in the plane, three of which are the previous mentioned Euclidean, 

Hyperbolic and Elliptic.  The Klein – Cayley classification is based in the different 

ways that is possible to define distances between two points and the measure of the 

angle between two straight lines. This classification allowed Klein to create the so-

called Erlanger Program. In his Erlanger Program Klein proposed that Euclidean and 

non- Euclidean geometry be regarded as special cases of projective geometry. In each 

case the common features that, according to Klein, made them geometries were that 

there were a set of points, called a “space,” and a group of transformations by means of 

which figures could be moved around in the space without altering their essential 

properties. Different geometries would have different spaces and different groups, and 

the figures would have different basic properties. 

In 1895 David Hilbert presented in his Grundlagen der Geometrie [1] a way of not 

merely sorting out the geometries in Klein’s hierarchy according to the different axiom 

systems they obeyed but to new geometries as well. For the first time there was a way 

of discussing geometry that lay beyond even the very general terms proposed by 

Riemann.  

In spite of not all of these different geometries have continued to be of interest for years, 

there has recently been growing interest in Hilbert Geometry [1] and many research 

papers were published, see in particular the papers by Benoist [2 - 6], Colbois, Verovic 

and Vernicos [7 - 11], Fortsch, Karlsson and Noskov [12 - 13], de la Harpe [14], the 

thesis of Socie-Methou [15 - 16] and the book by Chern and Shen [17] to cite just a few 

of them.  

Mathematicians could ask why they had believed for so many years that Euclidean 

geometry to be the only one when, in fact, many different geometries existed.  The 

German mathematician Moritz Pasch argued in 1882 that perhaps the mistake had been 

to rely too heavily on physical intuition. In his view an argument in mathematics and in 

particular geometry should depend for its validity not on the physical interpretation of 

the terms involved but upon purely formal. 

Perhaps new cosmological discovers and models relating the destiny of the universe to 

its geometry brought new interest to different kind of geometry including the Hilbert’s 

one. Hilbert geometry has unusual properties that can be used to explore the notion of 

geometry itself.  Hilbert argued that the rules governing the use of mathematical terms 

were arbitrary, and each mathematician could choose them at will, provided only that 

the choices made were self-consistent. A mathematician produced abstract systems 

unconstrained by the needs of science, and, if scientists found an abstract system that fit 

one of their concerns, they could apply the system secure in the knowledge that it was 
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logically consistent. Points of view like this one produced that the hegemony of 

Euclidean geometry was challenged by non- Euclidean geometry and projective 

geometry by 19 century.  

1.2 The Hilbert metric. 

 

The Hilbert metric is a canonical metric associated to an arbitrary bounded convex 

domain of n . It has been proposed by David Hilbert as an example of a metric for 

which the Euclidean straight lines are shortest geodesic curves. 

 

 Let H  be a nonempty bounded open convex set in n ,  with 2n  . The Hilbert 

distance “ distH ” on H  was introduced by D. Hilbert as follows. For any P H , let 

( ), 0distH P P = .  

For distinct points P  and Q in H , assume the line passing through P ,Q  intersects the 

boundary H at two points ,X Y such that the order of these four points on the line is 

, , ,Y P Q X , see figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Denote the cross-ratio of these points by: 

                                                    ( ) :
PX PY

PQXY
XQ YQ

=  

Where the bar on letters means ordinary Euclidean distance on n . Then the Hilbert 

distance is defined by: 

                                                      ( ) ( ), logdistH P Q PQXY=
                       

( )1.1
 

 

This is a well defined distance under which the points at boundary are “at infinite”. 

The metric space ( ),H distH is called Hilbert geometry. When H  is the unit open ball 

( ) 2

1 2

1

, , , 1
n

n

n i

i

x x x x
=

 
  

 
 , ( ),H distH  is the Klein model for the hyperbolic 

geometry.  

 

Some important properties of formula (1.1) are: 

 

•

•

•

•

Y

P

Q

X

Figure 1 
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i) The formula (1.1) is indeed a metric. 

ii) This metric is Finslerian, provided the boundary of H is smooth enough. 

iii) The metric is projective, that is, the Euclidean straight lines are geodesic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Distance and coordinates in Hilbert geometry in a triangle. 

 

To explore Hilbert geometry in a triangle it will be convenient to introduce alternative 

definition for the Hilbert metric. Since the cross-ratio is invariant under any projective 

mapping T, ( ),H distH  and ( ) ( )( ),T H distT H  are isometric as Hilbert geometry 

(figure 2). We will use this property of the cross-ratio to introduce coordinates for 

points in ( ),H distH  when H  is a triangle.    

We know that given two points A  and B in a segment, then a point Q divides this 

segment in a ratio k  if  
AQ

k
QB

= . Solving for Q  we have Q a A b B=  +   

with 1a b+ = . Where 
1

1
a

k
=

+
 and 

1

k
b

k
=

+
.  

These relations are independent of the chosen origin of coordinates. 

 In the same way, given the vertices A , B  and C of a triangle H , a point P  inside of it 

can be written as: 

 

                   P a A b B c C=  +  +  , 1a b c+ + = , 0, 0, 0a b c    
 

We will call ( ), ,a b c  the projective coordinates of a point P . 

 Using these coordinates we can see, for example that points with ( )0, ,b c correspond to 

the side BC  etc.  

Let be CP  the projection of a point ( ), ,P a b c=  onto the side AB  then:  

1 1
C

a b
P A B

c c
= +

− −
 

The point CP  divides the segment AB  in a ratio 
b

k
a

=  (figure 3). 

 

O

P Q
Y

X

Y  P Q Q

( ) ( )PQXY P Q X Y   =

Figure 2 
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PROPOSITION 1: If ( )1 1 1, ,P a b c= and ( )2 2 2, ,Q a b c=  are two points inside the 

triangle H and the straight line that joins them intersect the sides AC and BC  then: 

                                       

                                         ( ) 2 1

2 1

, log
b a

distH P Q
a b

 
=  

 
.                  (2.1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proof: 

 

By projection from C we will have (figure 4): 

 

 ( ) ( ) ( ), log log :C C
C C

C C

P B P A
distH P Q PQXY P Q BA

BQ AQ
= = =

 
 

But 1

1

1C

C

P B a

k bP A
= =  and 2

2

C

C

AQ b
l

aBQ
= =  so, ( ) 2 1

2 1

, log
b a

distH P Q
a b

 
=  

 
■ 

 

In the same way, if the straight line that joins points ( )1 1 1, ,P a b c= and ( )2 2 2, ,Q a b c=  

intersects the sides AB and BC  then: 

                                          ( ) 1 2

1 2

, log
a c

distH P Q
c a

 
=  

 
               (2.2) 

 

 If the straight line joining these points intersects the sides AB and AC  then:   

 

                                          ( ) 1 2

1 2

, log
b c

distH P Q
c b

 
=  

 
                (2.3) 

 

To explore the metric space ( ),H distH  we construct the Maple procedure “disT” (see 

appendix A), which consider all these cases. 

 

A
B

C

P•

CP
•

Figure 3 
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PROPOSITION 2: If ( )1 1 1, ,P a b c= and ( )2 2 2, ,Q a b c=  are two points inside the 

triangle H There exists a point ( )3 3 3, ,Z a b c H=  such that P , Q  and Z  are not 

collinear and: 

                                   ( ) ( ) ( ), , ,distH P Q distH P Z distH Z Q= +
 

 

Using the procedures “disT” (appendix A) and “ttn” (appendix B) we colored the inside 

of the triangle H according to the value of the function: 

 

                    ( ) ( ) ( ) ( ), , ,distH P Z distH Z Q distH P Q Z+ − =          (2.4) 

 

The results can be seen in the figure 5. Inside the quadrilateral represented in the figure, 

we have ( ) 0Z = .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Proof: 

 

Taking Z  inside the quadrilateral as it is shown in the figure we have: 

 

( ) ( ) 3 31 2

1 3 3 2

3 3 31 2 1

1 3 3 2 1 3

, , log log

log log log log

c aa c
distH P Z distH Z Q

c a c a

c a ca c a

c a c a c a

   
+ =  +  =   

   

      
=  +  = +      

      

3

3

log
a

c

 
+  

 

( )

2

2

1 2 1 2

1 2 1 2

log

log log ,

c

a

a c a c
distH P Q

c a c a

 
+ = 

 

   
 =  =   

   

  

 

If Z is outside of the quadrilateral then the distance must be calculated using different 

formulas because the straight line joining the points ,P Z  and ,Q Z  intersects different 

pairs of sides of the triangle ■ 

 

This is an unusual property of the Hilbert geometry in a triangle, and means that there 

is not a unique geodesic line joining two different points.  

 

•

•

•

A B

C

P

Q

Z

Figure 5 



The Electronic Journal of Mathematics and Technology, Volume 4, Number 1, ISSN 1933-2823 

 

32 

 

Together with the projective coordinates we will consider the affine coordinates of a 

point P . If  ( ), ,P a b c=  with  1a b c+ + =  then affine coordinates for P are: 

                                  yxP ,=      with    




=

=

cby

cax

/

/
                    (2.5) 

We suppose P  is strictly at the interior of the triangle, where a, b, c are positives. 

If we know affine coordinates  ,x y  then we can obtain the projective coordinates by 

the following formulas: 

                 

( )

( )

( )

1

1

1

1

x
a

x y

y
b

x y

c
x y


=

+ +


=
+ +


=

+ +

                        (2.6) 

 

These affine coordinates has the advantage to be two (and not three as projective 

coordinates) in a space of dimension two. 

 

The formula for distance “distH” in these coordinates however varies and we write it 

down here: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

A B

C

•
•

P
Q

 1 1,P x y=  2 2,Q x y=

( ) ( )2 1

2 1

, log       2.7
y x

distH P Q
x y

 
=  

 

A B

C

•

•

P

Q
( ) ( )1

2

, log          2.8
y

distH P Q
y

 
=  

 

A B

C

•

•

P

Q

( ) ( )1

2

, log          2.9
x

distH P Q
x

 
=  
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For example, the affine coordinates of the points in figure 8 for 1r =  are: 

 

 1, 1O = ;  1 1,P e= ; 1

2 ,1P e− =   ; 1 1

3 ,P e e− − =   ; 1

4 1,P e− =   ;  5 ,1P e= ; 

 eeP ,6 = . 

3. Circles and Disks. 

 

For our Maple explorations of Hilbert geometry we will use an equilateral triangle with 

vertices at points ( )0,0A = , ( )1,0B =  and
1 3

,
2 2

C
 

=   
 

.  Using the procedure “disT” 

(appendix A) together with the procedure “tt2” (appendix C) we explore the shapes of 

disks centered at the points 
1 1 1 1 1 1

, ,
3 3 3 3 3 3

O A B C
 

=  +  +  =  
 

 (see figure 6) and   

3 1 25 3 1 25
, ,

7 8 56 7 8 56
O A B C

 
 =  +  +  =  

 
 (see figure 7) with different radius. Note that the 

“circles” are really hexagons.     

 

 
 

 

This property is independent of the used triangle. If we use another triangle for example, 

with vertices at points ( )0,0A = , ( )1,0B =  and ( )0,1C =  we obtain again “circles-

hexagons” as in the following figures: 
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We can parameterize “circles” (boundary of the hexagons) centered at O  and radius r

using the following formulas (see figure 8): 

 

                         ( )1 2 , ,1r rPP t e t t e t=  − −  ;    ( )2 3 ,1 ,    r rP P t t e t e t= − −    

                         ( )3 4 1 , ,r rP P t e t t e t= − −   ;    ( )4 5 , ,1r rP P e t t t e t=  − −             (3.1) 

                         ( )5 6 ,1 ,r rP P e t t e t t=  − −  ;    ( )6 1 1 , ,r rP P t e t e t t= − −    

with 
1 1

2 1 2r r
t

e e
 

 + +  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using these formulas with Maple commands given in the appendix D we obtain circles 

with center O  and radius r  as it is shown in figure 9. 

4. Measure of the angles and Trigonometric Functions. 

Consider now the following definition of an angle for the Hilbert geometry in a triangle. 

Let’s take two semi-straight lines that intersect each other in a vertex P . By an isometry 

we can take P  to the central point O ; the semi-straight lines intersect the unitary circle 

in two points defining an arch in the circle. The length of this arch will be the measure 

of the angle. 
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•
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•
•

Figure 8 Figure 9 
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Figure 10 
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                ( ) ( )2 2, ,UOV distH U P distH P V = = +      (4.1) 

 

It is easy to show that ( ) ( )
5

1 6 1

1

, , 6i i

i

distH P P distH P P+

=

+ =  so the complete angle 

measures 6. 

 

As in the classic case, we now consider a semi-straight line
1O P  that starts to move in a 

counter clockwise direction. We define ( ) ( ),C S     as the affine coordinates of the 

point P  if 1POP = , (figure 11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using the procedure “Arch” (appendix E) we can determine the angle   for any point 

P  on the unitary circle given its affine coordinates. This procedure uses the formulas 

(3.1), automatically determines to which segment of the unitary circle P belongs and 

applies the correct formula for the distance of P from a point 1P . With this procedure we 

can construct the graphics of functions ( )C   and ( )S  as it is shown in figures 12 and 

13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( )C 



•

•

•

•

• •

•
1P

2P 3P

4P

5P 6P

1P

Figure 12 

O

2P

 1 1,P e=

( ) ( ),P C S =   


Figure 11 
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Moreover, these functions can be given in analytic form as it is shown in the following 

proposition.  

 

PROPOSITION 3: The trigonometric functions take the following values: 

 

( )

( ) 1 if 0 1

C e

S e







 

−

−

 =


=  

    ;    
( )

( )

1

1  if 1 2

C e

S e 



 

−

−

 =


=  

 

 

( )

( )

3

1 if        2 3

C e

S e



 

−

−

 =


=  

  ;     
( )

( )

3

4 if 3 4

C e

S e







 

−

−

 =


=  

 

                  

                 
( )

( ) 4   if 4 5

C e

S e



 −

=


=  

   ;  
( )

( )

6

if 5 6

C e

S e



 

− =


=  

 

 

These formulas can be extended by periodicity for   0 or also for   6, (see figures 

14 and 15). 

 

Proof: 

 

We will verify for instance formula (1). By using different versions of distance (2.7 – 

2.9) can be proved in the same way the rest of the formulas  

Using formula 2.7 we have: 

 

( )  ( )1, 1,1 , ,distH O P distH e e − − =    

 

Figure 13 
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        ( )
11

log log 1
1

e
e

e





−

−

 
=  = = 

 
 

Using formula (2.9) 

 

( )  ( )1

1, 1, , ,distH P P distH e e e − − =    

      =  ( )log log
1

e
e


 

− 
= = 

 
. ■ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using ( )S   and ( )C  we can define new functions:  

 

                                ( )
( )

( )

S
T

C





=  ;           ( )

( )

( )

C
Ct

S





= . 

 

The graphics of these functions are shown in figures 16 and 17 respectively.  

 

 

 

 

 

 

 

Figure 15 

Figure 14 

( )C 



( )S 
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With the proposition 3 and the graphics of the functions ( )S  , ( )C  , ( )T   and 

( )Ct   we can proof the following proposition: 

 

PROPOSITION 4: The functions ( )S  , ( )C  , ( )T   and ( )Ct    satisfy the following 

relations:   

   ( ) ( )1C S − = ;  

( ) ( )1C Ct + =  

( ) ( )1S T − = ;  

( ) ( )2 1Ct T − = +
 

 

5. Alternative definitions for trigonometric functions.  

 

With the view to gaining more familiar properties of trigonometric functions for Hilbert 

geometry in a triangle, we could adopt the following alternative definitions:        

                                  

   ( ) ( )( )lns S = ;                               

                        ( ) ( )( )lnc C =  

( )T 



Figure 16 

Figure 17 



( )Ct 
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( )
( )
( )

( )( )
( )( )

11 ln
22

ln

Ss
t

c C




 

−−
= = ;  

( )
( )

( )
( )( )

( )( )
ln

1 1ln2 2

Cc
ct

s S




 
= =

− −
 

 

The graphics for these functions are shown in the figures 18 - 21:   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18 

Figure 19 

Figure 20 
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PROPOSITION 5: The functions ( )s  , ( )c  , ( )t   and ( )ct    satisfy the following 

relations: 

     ( ) ( )6s s = + ;  

( ) ( )6c c = + ;  

( ) ( )1c s − = ;  

( ) ( )c c − = − ; 

1 1

2 2
s s 
   

− = −   
   

;  

( ) ( )3t t = + ;  

( ) ( )3ct ct = +  .       

 

6. Conclusions. 

 

Hilbert Geometry is a particularly simple metric space on the interior of a compact 

convex set nH   that can be used to explore and visualize properties of non- 

Euclidean and even non Riemannian geometry. It has been proposed by David Hilbert 

as an example of non- Euclidean geometry for which the Euclidean straight lines are 

shortest geodesic curves. Since the definition of the Hilbert geometry only uses cross 

ratios, the Hilbert metric is a projective invariant. It possesses a series of unusual 

properties that hits our common sense and physical intuition.  In particular, the distance 

between two points depends of its relative positions in the space, (i. e. direction) this 

characteristic is common to finslerian metric, moreover in the case when the space H  is 

a simplex as the triangle in our paper there are more than one geodesic joining two 

distinct points and the “circles” are hexagons. In spite of these strange properties, we 

can define a measure of angles and trigonometric functions that have apparently similar 

properties than common trigonometric functions of Euclidean geometry. What results to 

be a little more complicated is define the area of a triangle, however some inside has 

been done recently in [25,26]. 

 

Figure 21 

( )ct 
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6. Supplementary Electronic Materials 

 

     Maple codes 
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